Identifying Aggregation Artery Architecture of constrained Origin-Destination flows using Manhattan L-function.

2021 
The movement of humans and goods in cities can be represented by constrained flow, which is defined as the movement of objects between origin and destination in road networks. Flow aggregation, namely origins and destinations aggregated simultaneously, is one of the most common patterns, say the aggregated origin-to-destination flows between two transport hubs may indicate the great traffic demand between two sites. Developing a clustering method for constrained flows is crucial for determining urban flow aggregation. Among existing methods about identifying flow aggregation, L-function of flows is the major one. Nevertheless, this method depends on the aggregation scale, the key parameter detected by Euclidean L-function, it does not adapt to road network. The extracted aggregation may be overestimated and dispersed. Therefore, we propose a clustering method based on L-function of Manhattan space, which consists of three major steps. The first is to detect aggregation scales by Manhattan L-function. The second is to determine core flows possessing highest local L-function values at different scales. The final step is to take the intersection of core flows neighbourhoods, the extent of which depends on corresponding scale. By setting the number of core flows, we could concentrate the aggregation and thus highlight Aggregation Artery Architecture (AAA), which depicts road sections that contain the projection of key flow cluster on the road networks. Experiment using taxi flows showed that AAA could clarify resident movement type of identified aggregated flows. Our method also helps selecting locations for distribution sites, thereby supporting accurate analysis of urban interactions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []