A Bayesian nonparametric approach to count-min sketch under power-law data streams.

2021 
The count-min sketch (CMS) is a randomized data structure that provides estimates of tokens' frequencies in a large data stream using a compressed representation of the data by random hashing. In this paper, we rely on a recent Bayesian nonparametric (BNP) view on the CMS to develop a novel learning-augmented CMS under power-law data streams. We assume that tokens in the stream are drawn from an unknown discrete distribution, which is endowed with a normalized inverse Gaussian process (NIGP) prior. Then, using distributional properties of the NIGP, we compute the posterior distribution of a token's frequency in the stream, given the hashed data, and in turn corresponding BNP estimates. Applications to synthetic and real data show that our approach achieves a remarkable performance in the estimation of low-frequency tokens. This is known to be a desirable feature in the context of natural language processing, where it is indeed common in the context of the power-law behaviour of the data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []