Robot hand-eye cooperation based on improved inverse reinforcement learning
2021
How to make accurate action decisions based on visual information is one of the important research directions of industrial robots. The purpose of this paper is to design a highly optimized hand-eye coordination model of the robot to improve the robots’ on-site decision-making ability.,The combination of inverse reinforcement learning (IRL) algorithm and generative adversarial network can effectively reduce the dependence on expert samples and robots can obtain the decision-making performance that the degree of optimization is not lower than or even higher than that of expert samples.,The performance of the proposed model is verified in the simulation environment and real scene. By monitoring the reward distribution of the reward function and the trajectory of the robot, the proposed model is compared with other existing methods. The experimental results show that the proposed model has better decision-making performance in the case of less expert data.,A robot hand-eye cooperation model based on improved IRL is proposed and verified. Empirical investigations on real experiments reveal that overall, the proposed approach tends to improve the real efficiency by more than 10% when compared to alternative hand-eye cooperation methods.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
6
References
0
Citations
NaN
KQI