Surface Characterization and Erosion–Corrosion Behavior of Q235 Steel in Dynamic Flow

2014 
The study aims at investigating the surface evolution and erosion–corrosion behavior of Q235 steel during erosion–corrosion process in various dynamic flows. For the purpose, true flow fields with the average flow velocities of 0.4 and 0.8 m/s and impact angles of 0°, 30° and 90° to the sample surface were successfully measured by particle image velocimetry. The topography of erosion–corrosion surface was observed by laser scanning confocal microscopy. The evolution of localized corrosion pattern is found to be determined by impact angle, i.e., round or elliptical corrosion pit corresponds to impact angle of 90° and ribbon-like corrosion pit corresponds to 0°. The deeper corrosion pits were observed at impact angle of 30° than those at the other two impact angles owing to combined effects of shear and normal stresses. Electrochemical impedance spectroscopy of samples shows smaller radiuses of capacitive loops at velocity of 0.8 m/s than those at 0.4 m/s. Equivalent circuit analysis implies unstable surface state of sample in dynamic flow. Above results indicate that the flow velocity and impact angle play the key role in the erosion–corrosion behavior of Q235 steel.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    14
    Citations
    NaN
    KQI
    []