TMT-based proteomics analysis reveals the efficacy of jiangzhuo formula in improving the lipid profiles of dyslipidemia rats.

2021 
Abstract Ethnopharmacological relevance . Jiangzhuo Formula (JZF) is a traditional Chinese herbal prescription that is clinically applied to treat dyslipidemia. However, the mechanism underlying its efficacy remains unexplored. Aim of the study . This study aims to elucidate the underlying mechanisms, explore potential pathways, and identify the key proteins of JZF for the treatment of dyslipidemia. Methods . In this work, Q-Orbitrap high-resolution liquid chromatography mass spectrometry was used to identify the natural ingredients in JZF, rats with dyslipidemia were established via a high-fat diet for four weeks, then the dyslipidemia rats were treated with high-dose JZF (9 g/d) and low-dose JZF (4.5 g/d) for four weeks. After treatment, serum lipid detection and Oil-red-O staining were conducted to assess the efficacy of JZF in ameliorating dyslipidemia. Tandem mass tag (TMT) -based quantitative proteomics technology was then used to evaluate the roles and importance of proteins from the extracted hepatic tissue. The differentially expressed proteins were assessed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Gene Ontology (GO), and protein-protein interaction (PPI) networks. Western blot and PCR analysis were used to validate the potential targets regulated by JZF. Results . JZF could significantly improve the blood lipid profiles of serum and fat deposits of the liver. A total of 123 differentially expressed proteins were detected after JZF intervention, comprising 65 up-regulated proteins and 58 down-regulated proteins. The KEGG pathway analysis revealed that cholesterol metabolism, the PPAR signaling pathway, and bile secretion were the principal pathways involved in the disordered lipid metabolism, while GO analysis suggested that proteins that are located in the cell, regulate cellular processes, and show binding activity contribute to reductions in lipids. The combination of proteomics, western blot, and PCR suggested that Apolipoprotein B (APOB), Apolipoprotein E (APOE), cholesterol 7 alpha-hydroxylase A1 (CYP7A1), and Hydroxymethylglutaryl-CoA synthase 1 (HMGCS1) might play critical roles in JZF’s lipid-lowering network. Conclusion . JZF can effectively improve lipid profiles via multiple pathways involved in cholesterol metabolism, the PPAR signaling pathway, and bile secretion. Generally, the proteomics techniques used in this research show that JZF could be a promising drug for the treatment of dyslipidemia.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    2
    Citations
    NaN
    KQI
    []