Nanoparticle-encapsulated P2X7 receptor antagonist in a pH-sensitive polymer as a potential local drug delivery system to acidic inflammatory environments

2015 
We have developed nanoparticles of anti-inflammatory P2X7 receptor antagonist encapsulated in a pH-sensitive polymer, poly(tetrahydropyran-2-yl methacrylate) (poly(THPMA)), as a potential local drug delivery system to target to acidic inflammatory environments, in which P2X7 receptors are implicated in the pathology of inflammation via the activation of immune cells. The nanoparticles were prepared using single emulsion methods, also their size and shape were confirmed by microscopy and spectroscopy, etc. The profiles of the pH-dependent degradation, release of antagonist and biological activities were investigated. The nanoparticles that encapsulated the 3,5-dichloropyridine derivative (2) with poly(THPMA), were observed to be more slowly cleaved than the blank nanoparticles. Moreover, the free P2X7 receptor antagonists potently inhibited the receptor activation, whereas the nanoparticles of the 3,5-dichloropyridine derivative (2) encapsulated poly(THPMA) exhibited much lower P2X7 antagonistic activity through sustained encapsulation. Thus, the nanoparticles of the 3,5-dichloropyridine derivative (2) encapsulated poly(THPMA) may be utilized to develop a pH-sensitive local drug delivery system for controlled release of anti-inflammatory therapeutics in acidic physiological environments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    9
    Citations
    NaN
    KQI
    []