Hyper-dendritic nanoporous zinc foam anodes

2015 
A synthetic method turns a problem with plate metal batteries into a path for greater stability and may lead to safer, cheaper batteries. Zinc is more abundant and easier to handle than lithium, but electrodes made from it suffer from shape-change effects that prevent stable cycling. Now, by electrodepositing nanoporous zinc foam onto a traditional current collector, Daniel Steingart from Princeton University in the USA and colleagues have exploited a problem with zinc electrodes — the formation of dendritic crystals that can short-circuit batteries. The team broke convention by deliberately conditioning their zinc electrodes at potentials far from equilibrium. This created a hyper-dendritic network foam that forms with 88% current efficiency and remains stable for over 100 recharge cycles — results superior to those of conventional batteries with non-porous zinc electrodes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    104
    Citations
    NaN
    KQI
    []