Predicting curvilinear target motion through an occlusion

2007 
When a tracked target is occluded transiently, extraretinal signals are known to maintain smooth pursuit, albeit with a reduced gain. The extent to which extraretinal signals incorporate predictions of time-varying behavior, such as gradual changes in target direction, is not known. Three experiments were conducted to examine this question. In the experiments, subjects tracked a target that initially moved along a straight path, then (briefly) followed the arc of a circle, before it disappeared behind a visible occlusion. In the first experiment, the target did not emerge from the occlusion and subjects were asked to point to the location where they thought the target would have emerged. Gaze and pointing behaviors demonstrated that most of the subjects predicted that the target would follow a linear path through the occlusion. The direction of this extrapolated path was the same as the final visible target direction. In the second set of experiments, the target did emerge after following a curvilinear path through the occlusion, and subjects were asked to track the target with their eyes. Gaze behaviors indicated that, in this experimental condition, the subjects predicted curvilinear target motion while the target was occluded. Saccades were directed to the unseen curvilinear path and pursuit continued to follow this same path at a reduced speed in the occlusion. Importantly, the direction of smooth pursuit continued to change throughout the occlusion. Smooth pursuit angular velocity was maintained for approximately 200 ms following target disappearance. The results of the experiments indicate that extraretinal signals indeed incorporate cognitive expectations about the time-varying behavior of target motion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    53
    Citations
    NaN
    KQI
    []