Residual Encoder and Convolutional Decoder Neural Network for Glioma Segmentation

2017 
A deep learning approach to glioma segmentation is presented. An encoder and decoder pair deep learning network is designed which takes T1, T2, T1-CE (contrast enhanced) and T2-Flair (fluid attenuation inversion recovery) images as input and outputs the segmented labels. The encoder is a 49 layer deep residual learning architecture that encodes the \(240\,\times \,240\,\times \,4\) input images into \(8\,\times \,8\,\times \,2048\) feature maps. The decoder network takes these feature maps and extract the segmented labels. The decoder network is fully convolutional network consisting of convolutional and upsampling layers. Additionally, the input images are downsampled using bilinear interpolation and are inserted into the decoder network through concatenation. This concatenation step provides spatial information of the tumor to the decoder, which was lost due to pooling/downlsampling during encoding. The network is trained on the BRATS-17 training dataset and validated on the validation dataset. The dice score, sensitivity and specificity of the segmented whole tumor, core tumor and enhancing tumor is computed on validation dataset. The mean dice score for whole tumor, core tumor and enhancing tumor for validation dataset were 0.824, 0.627 and 0.575, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    10
    Citations
    NaN
    KQI
    []