Destruction, Amorphization and Reactivity of Nano-BN Under Ball Milling

2009 
Abstract The processes of mechanical activation of a hexagonal boron nitride (h-BN) and its reactivity upon interaction with hydrogen and water were investigated using X-ray, TEM, Microdiffraction, Dynamic Light Scattering, FTIR-spectroscopy, adsorption (BET). Initial h-BN samples were monocrystalline plates 70–80 nm thick. Mechanical treatment of h-BN is accompanied by plate splitting and formation of crystallographically oriented “rods.” The rod thickness gradually diminishes to less than 5 nm. Specific surface area of the rods (400 m 2 /g), is found to be equal to the outer geometrical surface of rods. As nanocrystallites form “c” parameter of h-BN increases. When nanocrystallites are less than several nanometers in size, mechanical treatment results in BN amorphization; in this case specific surface of the system begins to decrease. Splitting of BN plates in the atmosphere of hydrogen is accompanied by the material hydrogenation and formation of B H and N H bonds. The amount of adsorbed hydrogen corresponds to monolayer filling. The amorphous part of activated BN interacts with water even at room temperature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    29
    Citations
    NaN
    KQI
    []