Refactorization of the midpoint rule

2020 
Abstract An alternative formulation of the midpoint method is employed to analyze its advantages as an implicit second-order absolutely stable timestepping method. Legacy codes originally using the backward Euler method can be upgraded to this method by inserting a single line of new code. We show that the midpoint method, and a theta-like generalization, are B-stable. We outline two estimates of local truncation error that allow adaptive time-stepping.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    5
    Citations
    NaN
    KQI
    []