High-Efficiency and Sustainable Desalination Using Thermo-regenerable MOF-808-EDTA: Temperature-Regulated Proton Transfer.

2021 
Adsorption as a desalination approach has the advantages of energy efficiency, low cost, and operational convenience, but its practical application is limited by low desalination capacity, consumption/disposal of strong acids/bases as regeneration reagents, and poor reusability. Herein, we synthesized a thermo-regenerable salt absorbent by grafting ethylenediaminetetraacetic acid (EDTA) onto a metal-organic framework (MOF), MOF-808-EDTA, which could rapidly adsorb NaCl within 30 min from saline water at 25 °C with a desalination capacity as high as 9.4 mmol/g. Moreover, the saturated adsorbent could be facilely regenerated in 80 °C water. Fourier transform infrared spectroscopy and derivative thermogravimetry revealed that temperature-regulated proton transfer between amino and carboxyl groups was the mechanism of thermo-regeneration. EDTA on MOF-808-EDTA appears in a zwitterionic state in water at room temperature, which allowed simultaneous adsorption of Na+ and Cl-. At elevated temperature, it returned to a nonionic state accompanied by the desorption of ions. A similar temperature-dependent adsorption-regeneration process was also observed for other salts, including LiCl, KCl, CaCl2, and MgCl2. Column experiments of brackish groundwater showed that 1 g of MOF-808-EDTA could produce ∼106 mL of fresh water (total dissolved solids < 600 mg/L) without significant capacity loss after 10 successive adsorption-regeneration cycles. This study is the first to propose an EDTA-based MOF for desalination and indicates the potential of MOF-808-EDTA as a green adsorbent for sustainable water desalination.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    2
    Citations
    NaN
    KQI
    []