Machine Learning Analysis of Left Ventricular Function to Characterize Heart Failure With Preserved Ejection Fraction

2018 
Background:Current diagnosis of heart failure with preserved ejection fraction (HFpEF) is suboptimal. We tested the hypothesis that comprehensive machine learning (ML) of left ventricular function at rest and exercise objectively captures differences between HFpEF and healthy subjects. Methods and Results:One hundred fifty-six subjects aged >60 years (72 HFpEF+33 healthy for the initial analyses; 24 hypertensive+27 breathless for independent evaluation) underwent stress echocardiography, in the MEDIA study (Metabolic Road to Diastolic Heart Failure). Left ventricular long-axis myocardial velocity patterns were analyzed using an unsupervised ML algorithm that orders subjects according to their similarity, allowing exploration of the main trends in velocity patterns. ML identified a continuum from health to disease, including a transition zone associated to an uncertain diagnosis. Clinical validation was performed (1) to characterize the main trends in the patterns for each zone, which corresponded to known...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    56
    Citations
    NaN
    KQI
    []