Risk Factors for Wire Fracture or Tethering in Deep Brain Stimulation: A 15-Year Experience.

2020 
BACKGROUND In deep brain stimulation (DBS), tunneled lead and extension wires connect the implantable pulse generator to the subcortical electrode, but circuit discontinuity and wire revision compromise a significant portion of treatments. OBJECTIVE To identify factors predisposing to fracture or tethering of the lead or extension wire in patients undergoing DBS. METHOD Retrospective review of wire-related complications was performed in a consecutive series of patients treated with DBS at a tertiary academic medical center over 15 yr. RESULTS A total of 275 patients had 513 extension wires implanted or revised. There were 258 extensions of 40 cm implanted with a postauricular connector (50.3%), 229 extensions of 60 cm with a parietal connector (44.6%), and 26 extensions 40 cm with a parietal connector (5.1%). In total, 26 lead or extension wires (5.1%) were replaced for fracture. Fracture rates for 60 cm extensions with a parietal connector, 40 cm wires with a postauricular connector, and 40 cm extensions with a parietal connector were 0.2, 1.4, and 12.9 fractures per 100 wire-years, significantly different on log-rank test. Total 16 (89%) 40 cm extension wires with a postauricular connector had fracture implicating the lead wire. Tethering occurred only in patients with 60 cm extensions with parietal connectors (1.14 tetherings per 100 wire-years). Reoperation rate correlated with younger age, dystonia, and target in the GPI. CONCLUSION The 40 cm extensions with parietal connectors have the highest fracture risk and should be avoided. Postauricular connectors risk lead wire fracture and should be employed cautiously. The 60 cm parietal wires may reduce fracture risk but increase tethering risk.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    6
    Citations
    NaN
    KQI
    []