1.25-Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector

2006 
The sensitivity of a high-rate photon-counting optical communications link depends on the performance of the photon counter used to detect the optical signal. In this paper, we focus on ways to reduce the effect of blocking, which is loss due to time periods in which the photon counter is inactive following a preceding detection event. This blocking loss can be reduced by using an array of photon counting detectors or by using photon counters with a shorter inactive period. Both of these techniques for reducing the blocking loss can be employed by using a multi-element superconducting nanowire single-photon detector. Two-element superconducting nanowire single-photon detectors are used to demonstrate error-free photon counting optical communication at data rates of 781 Mbit/s and 1.25 Gbit/s.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    30
    Citations
    NaN
    KQI
    []