Optimization Dubins Path of Multiple UAVs for Post-Earthquake Rapid-Assessment

2020 
In the last decade, with the wide application of UAVs in post-earthquake relief operations, the images and videos of affected areas obtained by UAVs immediately after a seismic event have become an important source of information for post-earthquake rapid assessment, which is crucial for initiating effective emergency response operations. In this study, we first consider the kinematic constraints of UAV and the Dubins curve is introduced to fit the shortest flyable path for each UAV that meets the maximum curvature constraint. Second, based on the actual requirements of post-earthquake rapid assessment, heterogeneous UAVs, multi-depot launching, and targets allowed access to multiple times, the paper proposes a multi-UAV rapid-assessment routing problem (MURARP). The MURARP is modeled as the multi-depot revisit-allowed Dubins TOP with variable profit (MD-RDTOP-VP) which is a variant of the team orienteering problem (TOP). Third, a hybrid genetic simulated annealing (HGSA) algorithm is developed to solve the problem. The result of numerical experiments shows that the HGSA algorithm can quickly plan flyable paths for heterogeneous UAVs to maximize the expected profit. Finally, a case study based on real data of the 2017 Jiuzhaigou earthquake in China shows how the method can be applied in a post-earthquake scenario.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    5
    Citations
    NaN
    KQI
    []