Hybrid input shaping and PD-type Fuzzy Logic control scheme of a gantry crane system

2009 
This paper presents investigations into the development of hybrid control schemes for input tracking and anti-swaying control of a gantry crane system. A nonlinear overhead gantry crane system is considered and the dynamic model of the system is derived using the Euler-Lagrange formulation. To study the effectiveness of the controllers, initially a collocated PD-type Fuzzy Logic control is developed for cart position control of gantry crane. This is then extended to incorporate input shaper control schemes for anti-swaying control of the system. The positive input shapers with the derivative effects are designed based on the properties of the system. Simulation results of the response of the manipulator with the controllers are presented in time and frequency domains. The performances of the hybrid control schemes are examined in terms of level of input tracking capability, swing angle reduction and time response specifications in comparison to the PD-type Fuzzy Logic control. Finally, a comparative assessment of the control techniques is presented and discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    7
    Citations
    NaN
    KQI
    []