An Agmon-Allegretto-Piepenbrink principle for Schroedinger operators

2021 
We prove that each Borel function $V : \Omega \to [-\infty, +\infty]$ defined on an open subset $\Omega \subset \mathbb{R}^{N}$ induces a decomposition $\Omega = S \cup \bigcup_{i} D_{i}$ such that every function in $W^{1,2}_{0}(\Omega) \cap L^{2}(\Omega; V^{+} dx)$ is zero almost everywhere on $S$ and existence of nonnegative supersolutions of $-\Delta + V$ on each component $D_{i}$ yields nonnegativity of the associated quadratic form $\int_{D_{i}} (|\nabla \xi|^2+V\xi^2)$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []