Evaluation of selected mathematical models to predict the inactivation of Listeria innocua by pulsed electric fields

2007 
The inactivation of Listeria innocua ATCC 51742 by pulsed electric fields was investigated at 35, 40 and 45 kV/cm. Results indicate that at treatment times shorter than 37 μs at 40 and 45 kV/cm, and 49 μs at 35 kV/cm, there is a linear relationship between the logarithm of the survivor fraction and the treatment time. However, longer times result in an abrupt increase in the slope of the inactivation curve and in inactivation values greater than six logarithmic cycles. A model based on Weibull's survival function was used to describe microbial inactivation and then compared to a first-order kinetic model. Distribution parameters of Weibull's survival function and kinetic constant for the first-order kinetic model were calculated by fitting experimental data. Calculated mean times for microbial inactivation from Weibull's distribution were 11.55, 8.65 and 5.39 μs at 35, 40 and 45 kV/cm, respectively. The goodness-of-fit between experimental and predicted values was determined using an accuracy factor. The model based on the Weibull survival distribution provided better accuracy factors than first-order kinetics. The model based on Weibull's survival function seems promising for describing survival curves that exhibit concavity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    40
    Citations
    NaN
    KQI
    []