Development of a 96-well based assay for kinetic determination of catalase enzymatic-activity in biological samples

2020 
Abstract Oxidative stress biomarkers are powerful endpoints in toxicological research. Cellular reductive/oxidative balance affects numerous signaling pathways involving H2O2. Detoxification and control of H2O2 levels results mainly from catalase activity. The aim of this work was to develop a precise, simple, cost-effective microassay to measure catalase activity in small tissue samples and cell extracts. We developed a protocol that quantifies H2O2 decomposition by intrinsic catalase in biological samples. Catalase activity was calculated based on rate of decomposition of H2O2, following absorbance at 240 nm. We developed a multi-well spectroscopic approach, reducing sample quantity requirements and allowing simultaneous assessment of large number of samples. The protocol is sensitive across a wide range of catalase activity (11.5–7575 U). The assay presents a 95% confidence interval with an intra-assay coefficient of variation of 3.7%, an inter-assay coefficient of variation of 6.2% and good correlation with a commercial kit. The assay was established and validated for different biological samples, including sheep hepatic tissue and human tumor and non-tumor cell lines. This high-throughput method is robust, sensitive, time-saving and cost-effective, generating highly reproducible results with precision and good correlation with a commercial kit reinforcing the method's validity for research and toxicological applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    1
    Citations
    NaN
    KQI
    []