Modelling moss-derived carbon in upland black spruce forests

2016 
Mosses play a key role in the carbon (C) cycle of upland black spruce (Picea mariana (Mill.) BSP) forests; however, national reporting models such as the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) do not include mosses. This study examined whether widely available plot-level merchantable tree volume could predict, for black spruce ecosystems in Canada’s boreal forest, the relative proportions of sphagnum and feather moss ground cover and moss net primary productivity (NPP). A field study found that merchantable tree volume was significantly related to tree canopy openness (R2 = 0.61, P < 0.001), which could then be used to model the relative ground cover of feather moss (R2 = 0.5, P < 0.001) and sphagnum (R2 = 0.45, P < 0.001) and NPP of feather moss (R2 = 0.41, P < 0.001) and sphagnum (R2 = 0.28, P < 0.001). The resulting MOSS-C submodel increased the accuracy of the CBM-CFS3’s prediction of organic-horizon C five-fold and could explain large-scale variation in sites dominated by sphagn...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    12
    Citations
    NaN
    KQI
    []