In-crystal affinity ranking of fragment hit compounds reveals a relationship with their inhibitory activities

2011 
Fragment-based drug discovery (FBDD), which is a molecular build-up strategy from small scaffolds, has recently become a promising approach for lead-compound generation. Although high-throughput protein crystallography is usually used to determine the protein–ligand complex structure and identify potential hit compounds, the relationship between the quality of the Fo–Fc maps of hit compounds and their inhibitory activities has rarely been examined. To address this issue, crystallographic competition experiments were carried out to determine the relative order of the in-crystal binding affinities using five hit compounds of bovine pancreatic trypsin inhibitors. Soaking experiments of all combinations of the five hit compounds were used to define the in-crystal affinity ranking. Based on characterization by a high-concentration bioassay, a clear correlation was observed between in-crystal binding affinities and the inhibitory activities in solution. Moreover, the correlation analysis revealed that X-ray-based screening can detect a weak hit compound with inhibitory activity below the limit of detection, even in a high-concentration assay. The proposed crystallographic competition method could function as a valuable tool, not only to select a plausible starting scaffold for subsequent synthetic efforts but also to access structure–activity relationships using fragment compounds with a wider detection limit than a biological assay. The crystallographic validation methodology described here will greatly accelerate the hit-to-lead process during fragment-based and structure-based drug design.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    14
    Citations
    NaN
    KQI
    []