Droplet generation at Hele-Shaw microfluidic T-junction

2019 
We proposed the combined numerical and experimental study of the dynamics of droplets generation at shallow microfluidic T-junction, where the flow is strongly confined in the vertical direction. The numerical simulation is performed by employing quasi-2D Hele-Shaw approximation with an interface capturing procedure based on coupled Level-Set and Volume-of-Fluid methods. We investigate the effect of the capillary number, Ca, the channel geometry (cross section aspect ratio, χ), and the flow rate (disperse-to-continuous phases) ratio, Γ, on the dynamics of the droplet breakup. Depending on Ca, three distinct flow regimes are identified: squeezing, tearing and jetting. In the squeezing regime at low Ca, the size of the generated droplets depends on χ and Γ, while it is almost insensitive to Ca in agreement to previous studies. In the tearing regime at moderate Ca, the droplet size decreases as ∼Ca−1/3, while it is only a weak function of χ and Γ. Finally, in the jetting regime, the steady co-flow of both ph...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    27
    Citations
    NaN
    KQI
    []