The ataxin-1 interactome reveals direct connection with multiple disrupted nuclear transport pathways.
2020
The expanded polyglutamine (polyQ) tract form of ataxin-1 drives disease progression in spinocerebellar ataxia type 1 (SCA1). Although known to form distinctive intranuclear bodies, the cellular pathways and processes that polyQ-ataxin-1 influences remain poorly understood. Here we identify the direct and proximal partners constituting the interactome of ataxin-1[85Q] in Neuro-2a cells, pathways analyses indicating a significant enrichment of essential nuclear transporters, pointing to disruptions in nuclear transport processes in the presence of elevated levels of ataxin-1. Our direct assessments of nuclear transporters and their cargoes confirm these observations, revealing disrupted trafficking often with relocalisation of transporters and/or cargoes to ataxin-1[85Q] nuclear bodies. Analogous changes in importin-β1, nucleoporin 98 and nucleoporin 62 nuclear rim staining are observed in Purkinje cells of ATXN1[82Q] mice. The results highlight a disruption of multiple essential nuclear protein trafficking pathways by polyQ-ataxin-1, a key contribution to furthering understanding of pathogenic mechanisms initiated by polyQ tract proteins. Patients with spinocerebellar ataxia type 1 express ataxin-1 with an extended polyglutamine (polyQ) tract that forms distinctive nuclear bodies. Here, the authors characterize the cellular pathways affected by polyQ-ataxin-1, showing that it disrupts multiple nuclear transport processes.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
68
References
3
Citations
NaN
KQI