Hybrid Drying of Murraya koenigii Leaves: Energy Consumption, Antioxidant Capacity, Profiling of Volatile Compounds and Quality Studies
2020
This study aims to reduce the amount of specific energy consumed during the drying of fresh Murraya koenigii leaves by comparing four drying methods: (1) convective hot-air drying (CD; 40, 50 and 60 °C); (2) single-stage microwave-vacuum drying (MVD; 6, 9 and 12 W/g); (3) two-stage convective hot-air pre-drying followed by microwave-vacuum finishing–drying (CPD-MVFD; 50 °C, 9 W/g); and (4) freeze-drying as a control in the analysis sections. The drying kinetics were also modelled using thin-layer models. The quality parameters of dried M. koenigii leaves were measured including total polyphenolic content (TPC), antioxidant capacity (ABTS and FRAP), profiling of volatile compounds, colour analysis and water activity analysis. Results showed that CPD-MVFD effectively reduced the specific energy consumption of CD at 50 °C by 67.3% in terms of kilojoules per gram of fresh weight and 48.9% in terms of kilojoules per gram of water. The modified Page model demonstrated excellent fitting to the empirical data obtained. FD showed promising antioxidant activity. The major contributor of antioxidant capacity was TPC. The volatile compounds profiled by gas chromatography-mass spectrometry, namely, b-phellandrene (31%), a-pinene (19.9%), and sabinene (16%) were identified as the major compounds of dried M. koenigii leaves. Colour analysis showed MVD’s high performance in preserving the colour parameters of M. koenigii leaves under all conditions. The colour parameters were correlated to the antioxidant capacity and TPC. Water activity analysis showed that the water activity of M. koenigii leaves for all drying methods indicating that the conditions were microbiologically and shelf-stable. Pearson correlation showed the colour parameters of the leaves had a strong correlation to TPC. Overall, MVD showed promising energy consumption reduction and recovery in TPC and volatile compounds [...]
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
35
References
10
Citations
NaN
KQI