Asymptotic Expansion of the Elastic Far-Field of a Crystalline Defect

2021 
Lattice defects in crystalline materials create long-range elastic fields which can be modelled on the atomistic scale using an infinite system of discrete nonlinear force balance equations. Starting with these equations, this work rigorously derives a novel far-field expansion of these fields: The expansion is computable and is expressed as a sum of continuum correctors and discrete multipole terms which decay with increasing algebraic rate as the order of the expansion increases. Truncating the expansion leaves a remainder describing the defect core structure, which is localised in the sense that it decays with an algebraic rate corresponding to the order at which the truncation occurred.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    0
    Citations
    NaN
    KQI
    []