Ru-Based Thin Film Temperature Sensor for Space Environments: Microfabrication and Characterization under Total Ionizing Dose

2016 
The paper shows the microfabrication processes of a Ruthenium-based resistance temperature detector and its behavior in response to irradiation at ambient temperature. The radiation test was done in a public hospital facility and followed the procedures based on the ESA specification ESCC 22900. The instrumentation system used for the test is detailed in the work describing the sensors resistance evolution before, during, and after the exposure. A total irradiation dose of 43 krad with 36 krad/h dose rate was applied and a subsequent characterization was performed once the Ru sensors were submitted to an 80°C annealing process during a period of 168 h. The experimental measurements have shown the stability of this sensor against total ionizing dose (TID) tests, not only in their resistance absolute values during the irradiation phase but also in the relative deviation from their values before irradiation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    3
    Citations
    NaN
    KQI
    []