Rac1-dependent endocytosis and Rab5-dependent intracellular trafficking are required by Enterovirus A71 and Coxsackievirus A10 to establish infections.

2020 
Abstract Enterovirus A71 (EVA71) and Coxsackievirus A10 (CVA10) are representative types of Enterovirus A. Dependent on the host cell types, the EVA71 entry may utilize clathrin-, caveola-, and endophilin-A2-mediated endocytosis. However, the cell-entry and intracellular trafficking pathways of CVA10, using KREMEN1 as its receptor, are unclear. Here, we tested the relevant mechanisms through RNA interference (RNAi) and chemical inhibitors. We found that endocytosis of EVA71 and CVA10 in rhabdomyosarcoma (RD) cells engaged multiple pathways, and both viruses required Rac1. Interestingly, while CDC42 and Pak1 participated in EVA71 infection, PI3K played a role in CVA10 infection. The functions of Rab proteins in intracellular trafficking of CVA10 and EVA71 were examined by RNAi. Knockdown of Rab5 and Rab21 significantly reduced CVA10 infectivity, while knockdown of Rab5, Rab7 and Rab9 reduced EVA71 infectivity. Confocal microscopy confirmed the colocalization of CVA10 virions with Rab5 or Rab21, and colocalization of EVA71 virions with Rab5 or Rab7. Additionally, we observed that both CVA10 and EVA71 infections were inhibited by endosome acidification inhibitors, bafilomycin-A1 and NH4Cl. Together, our findings comparatively illustrate the entry and intracellular trafficking processes of representative Enterovirus A types and revealed novel enterovirus intervention targets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    2
    Citations
    NaN
    KQI
    []