Oral drug delivery systems using core–shell structure additive manufacturing technologies: a proof-of-concept study

2021 
OBJECTIVES The aim of this study was to couple fused deposition modelling 3D printing with melt extrusion technology to produce core-shell-structured controlled-release tablets with dual-mechanism drug-release performance in a simulated intestinal fluid medium. Coupling abovementioned technologies for personalized drug delivery can improve access to complex dosage formulations at a reasonable cost. Compared with traditional pharmaceutical manufacturing, this should facilitate the following: (1) the ability to manipulate drug release by adjusting structures, (2) enhanced solubility and bioavailability of poorly water-soluble drugs and (3) on-demand production of more complex structured dosages for personalized treatment. METHODS Acetaminophen was the model drug and the extrusion process was evaluated by a series of physicochemical characterizations. The geometries, morphologies, and in vitro drug-release performances were compared between directly compressed and 3D-printed tablets. KEY FINDINGS Initially, 3D-printed tablets released acetaminophen more rapidly than directly compressed tablets. Drug release became constant and steady after a pre-determined time. Thus, rapid effectiveness was ensured by an initially fast acetaminophen release and an extended therapeutic effect was achieved by stabilizing drug release. CONCLUSIONS The favourable drug-release profiles of 3D-printed tablets demonstrated the advantage of coupling HME with 3D printing technology to produce personalized dosage formulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []