Transcriptome analysis reveals a complex response to the RGNNV/SJNNV reassortant Nervous Necrosis Virus strain in sea bream larvae.

2021 
Abstract The gilthead sea bream (Sparus aurata) is a marine fish of great importance for Mediterranean aquaculture. This species has long been considered resistant to Nervous Necrosis Virus (NNV), an RNA virus that causes massive mortalities in several farmed fish animals. However, the recent appearance of RGNNV/SJNNV reassortant strains started to pose a serious threat to sea bream hatcheries, as it is able to infect larvae and juveniles of this species. While host response to NNV has been extensively studied in adult fish, little attention has been devoted to early life history stages, which are generally the most sensitive ones. Here we report for the first time a time-course RNA-seq analysis on 21-day old fish gilthead sea bream larvae experimentally infected with a RGNNV/SJNNV strain. NNV-infected and mock-infected samples were collected at four time points (6h, 12h, 24h, and 48h post infection). Four biological replicates, each consisting of five pooled larvae, were analysed for each time point and group. A large set of genes were found to be significantly regulated, especially at early time points (6h and 12h), with several heat shock protein encoding transcripts being up-regulated (e.g. hspa5, dnaj4, hspa9, hsc70), while many immune genes were down-regulated (e.g. myd88 and irf5 at T06, pik3r1, stat3, jak1, il12b and il6st at T12). A gene set enrichment analysis (GSEA) identified several altered pathways/processes. For instance, the formation of peroxisomes, which are important anti-viral components as well as essential for nervous system homeostasis, and the autophagy pathway were down-regulated at 6h and 24h post infection (hpi). Finally, two custom “reactomes” (i.e. significant gene sets observed in other studies) were defined and used. The first reactome integrated the transcriptomic response to NNV in different fish species, while the second one included all genes found to be stimulated either by interferon (IFN) or by IFN and Chikungunya virus in zebrafish. Genes in both reactomes showed predominant up-regulation at 6hpi and 12hpi and a general down-regulation at 24hpi. Such evidence suggest a certain degree of similarity between the response of sea bream and that of other fish species to NNV, while the observed down-regulation of IFN- and viral-stimulated pathways argues for a possible interference of NNV against the host response.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    1
    Citations
    NaN
    KQI
    []