High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation

2020 
Ferroelectric tunnel junctions use a thin ferroelectric layer as a tunnelling barrier, the height of which can be modified by switching its ferroelectric polarization. The junctions can offer low power consumption, non-volatile switching and non-destructive readout, and thus are promising for the development of memory and computing applications. However, achieving a high tunnelling electroresistance (TER) in these devices remains challenging. Typical junctions, such as those based on barium titanate or hafnium dioxide, are limited by their small barrier height modulation of around 0.1 eV. Here, we report a ferroelectric tunnel junction that uses layered copper indium thiophosphate (CuInP2S6) as the ferroelectric barrier, and graphene and chromium as asymmetric contacts. The ferroelectric field effect in CuInP2S6 can induce a barrier height modulation of 1 eV in the junction, which results in a TER of above 107. This modulation, which is shown using Kelvin probe force microscopy and Raman spectroscopy, is due to the low density of states and small quantum capacitance near the Dirac point of the semi-metallic graphene. A ferroelectric tunnel junction that uses copper indium thiophosphate as the ferroelectric barrier, and graphene and chromium as asymmetric contacts, can offer a high resistance ratio between on and off states.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    32
    Citations
    NaN
    KQI
    []