A Cost-Effectiveness Analysis of Lung Cancer Screening with Low-Dose Computed Tomography and a Diagnostic Biomarker

2021 
Background The Lung Computed Tomography Screening Reporting and Data System (Lung-RADS) reduces the false-positive rate of lung cancer screening but introduces prolonged periods of uncertainty for indeterminate findings. We assess the cost-effectiveness of a screening program that assesses indeterminate findings earlier via a hypothetical diagnostic biomarker introduced in place of Lung-RADS 3 and 4A guidelines. Methods We evaluated the performance of the US Preventive Services Task Force (USPSTF) recommendations on lung cancer screening with and without a hypothetical noninvasive diagnostic biomarker using a validated microsimulation model. The diagnostic biomarker assesses the malignancy of indeterminate nodules, replacing Lung-RADS 3 and 4A guidelines, and is characterized by a varying sensitivity profile that depends on nodules' size, specificity, and cost. We tested the robustness of our findings through univariate sensitivity analyses. Results A lung cancer screening program per the USPSTF guidelines that incorporates a diagnostic biomarker with at least medium sensitivity profile and 90% specificity, that costs $250 or less, is cost-effective with an incremental cost-effectiveness ratio lower than $100 000 per quality-adjusted life year, and improves lung cancer-specific mortality reduction while requiring fewer screening exams than the USPSTF guidelines with Lung-RADS. A screening program with a biomarker costing $750 or more is not cost-effective. The health benefits accrued and costs associated with the screening program are sensitive to the disutility of indeterminate findings and specificity of the biomarker, respectively. Conclusions Lung cancer screening that incorporates a diagnostic biomarker, in place of Lung-RADS 3 and 4A guidelines, could improve the cost-effectiveness of the screening program and warrants further investigation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    0
    Citations
    NaN
    KQI
    []