Generative Adversarial Networks in Medical Image Processing.

2020 
BACKGROUND The emergence of generative adversarial networks (GANs) has provided a new technology and framework for the application of medical images. Specifically, a GAN requires little to no labeled data to obtain highquality data that can be generated through competition between the generator and discriminator networks. Therefore, GANs are rapidly proving to be a state-of-the-art foundation, achieving enhanced performances in various medical applications. METHODS In this article, we introduce the principles of GANs and their various variants, deep convolutional GAN, conditional GAN, Wasserstein GAN, Info-GAN, boundary equilibrium GAN, and cycle-GAN. RESULTS All various GANs have found success in medical imaging tasks, including medical image enhancement, segmentation, classification, reconstruction, and synthesis. Furthermore, we summarize the data processing methods and evaluation indicators. Finally, we note the limitations of existing methods and the existing challenges that need to be addressed in this field. CONCLUSION Although GANs are in initial stage of development in medical image processing, it will have a great prospect in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []