Global existence for systems of quasilinear wave equations in (1+4)-dimensions

2018 
Hormander proved global existence of solutions for sufficiently small initial data for scalar wave equations in $(1+4)-$dimensions of the form $\Box u = Q(u, u', u'')$ where $Q$ vanishes to second order and $(\partial_u^2 Q)(0,0,0)=0$. Without the latter condition, only almost global existence may be guaranteed. The first author and Sogge considered the analog exterior to a star-shaped obstacle. Both results relied on writing the lowest order terms $u\partial_\alpha u = \frac{1}{2}\partial_\alpha u^2$ and as such do not immediately generalize to systems. The current study remedies such and extends both results to the case of multiple speed systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []