Terrestrial or marine? – Indications towards the origin of IceNucleating Particles during melt season in the European Arctic upto 83.7° N

2020 
Abstract. Ice nucleating particles (INPs) initiate the primary ice formation in clouds at temperatures above ca. −38° C and have an impact on precipitation formation, cloud optical properties and cloud persistence. Despite their roles in both weather and climate, INPs are not well characterized, especially in remote regions such as the Arctic. We present results from a ship-based campaign to the European Arctic in May to July 2017. We deployed a filter sampler and a continuous flow diffusion chamber for off- and online INP analysis, respectively. We also investigated the ice nucleation properties of samples from different environmental compartments, i.e., the sea surface microlayer (SML), the bulk seawater (BSW), and fog water. Concentrations of INP (NINP) in the air vary between two to three orders of magnitudes at any particular temperature and are, except for the temperatures above −10° C and below −32° C, lower than in mid-latitudes. In these temperature ranges INP concentrations are the same or even higher than in the mid-latitudes. Heating of the filter samples to 95° C for 1 hour we found a significant reduction in ice nucleation activity, i.e., indications that the INPs active at warmer temperatures are biogenic. At colder temperatures the INP population was likely dominated by mineral dust. The SML was found to be enriched in INP compared to the BSW in almost all samples. The enrichment factor (EF) varied mostly between 1 and 10, but EFs as high as 94.97 were also observed. Filtration of the seawater samples with 0.2 µm syringe filters lead to a significant reduction in ice activity, indicating the INPs are larger, and/or are associated with particles larger than 0.2 µm. A closure study showed that aerosolization of SML and/or seawater alone cannot explain the observed air-borne NINP unless significant enrichment of INP by a factor of 105 takes place during the transfer from the ocean surface to the atmosphere. In the fog water samples with −3.47° C we observed the highest freezing onset of any sample. A closure study connecting NINP in fog water and the ambient NINP derived from the filter samples shows good agreement of the concentrations in both compartments, which indicates that INPs in the air are likely all activated into fog droplets during fog events. In a case study we considered a situation during which the ship was located in the marginal sea ice zone and NINP in air and the SML were highest in the temperature range above −10° C. Chlorophyll-a measurements by satellite remote sensing point towards the waters in the investigated region being biologically active. Heat induced reduction of ice nucleating ability indicated the biogenic nature of the air-borne INPs. Similar slopes in the temperature spectra suggested a connection between the INP populations in the SML and the air. Air mass history had no influence on the observed air-borne INP population. Therefore, we conclude that during the case study collected air-borne INPs originated from a local biogenic probably marine source.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    102
    References
    0
    Citations
    NaN
    KQI
    []