Formation of lambda-DNA's in parallel- and crossed-line arrays by molecular combing and scanning-probe lithography.

2006 
With the combination of a molecular combing technique and scanning-probe lithographic patterning, lambda-DNA's were stretched and aligned to form line array structures on patterned organic monolayer surfaces. The pattern was generated by anodizing a silicon surface using scanning-probe lithography to implant a polar organic layer in the middle of a nonpolar layer. The molecule in the polar layer, (aminopropyl)triethoxysilane (APS), has a -NH(3)(+) terminal group, which interacts strongly with phosphate backbone of DNA and provides a site for selective attachment of DNA. When parallel lines of APS were patterned, followed by combing along the lines, a single DNA was attached from the very top of each line and stretched along the line all the way to the bottom. The DNA-APS interaction was strong enough to withstand the second combing applied perpendicular to the first one. Thereby, the crossed-line array of DNA's was formed on the crossed-line array pattern of APS on a silicon substrate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    29
    Citations
    NaN
    KQI
    []