Surrogate model for gravitational wave signals from comparable and large-mass-ratio black hole binaries

2020 
Gravitational wave signals from compact astrophysical sources such as those observed by LIGO and Virgo require a high-accuracy, theory-based waveform model for the analysis of the recorded signal. Current inspiral-merger-ringdown models are calibrated only up to moderate mass ratios, thereby limiting their applicability to signals from high-mass-ratio binary systems. We present EMRISur1dq1e4, a reduced-order surrogate model for gravitational waveforms of 13   500     M in duration and including several harmonic modes for nonspinning black hole binary systems with mass ratios varying from 3 to 10000, thus vastly expanding the parameter range beyond the current models. This surrogate model is trained on waveform data generated by point-particle black hole perturbation theory (ppBHPT) both for large-mass-ratio and comparable mass-ratio binaries. We observe that the gravitational waveforms generated through a simple application of ppBHPT to the comparable mass-ratio cases agree surprisingly well with those from full numerical relativity after a rescaling of the ppBHPT’s total mass parameter. This observation and the EMRISur1dq1e4 surrogate model will enable data analysis studies in the high-mass-ratio regime, including potential intermediate-mass-ratio signals from LIGO/Virgo and extreme-mass-ratio events of interest to the future space-based observatory LISA.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    0
    Citations
    NaN
    KQI
    []