Approximating Nonlinear Relationships for Optimal Operation of Natural Gas Transport Networks

2018 
The compressor fuel cost minimization problem (FCMP) for natural gas pipelines is a relevant problem because of the substantial energy consumption of compressor stations transporting the large global demand for natural gas. The common method for modeling the FCMP is to assume key modeling parameters such as the friction factor, compressibility factor, isentropic exponent, and compressor efficiency to be constants, and their nonlinear relationships to the system operating conditions are ignored. Previous work has avoided the complexity associated with the nonlinear relationships inherent in the FCMP to avoid unreasonably long solution times for practical transportation systems. In this paper, a mixed-integer linear programming (MILP) based method is introduced to generate piecewise-linear functions that approximate the previously ignored nonlinear relationships. The MILP determines the optimal break-points and orientation of the linear segments so that approximation error is minimized. A novel FCMP model that includes the piecewise-linear approximations is applied in a case study on three simple gas networks. The case study shows that the novel FCMP model captures the nonlinear relationships with a high degree of accuracy and only marginally increases solution time compared to the common simplified FCMP model. The common simplified model is found to produce solutions with high error and infeasibility when applied on a rigorous simulation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    5
    Citations
    NaN
    KQI
    []