Method for phosphate oxygen isotopes analysis in water based on in situ enrichment, elution, and purification.

2020 
Abstract The phosphate oxygen isotope (δ18OP) ratio has been proven to be an effective tool to trace the sources and biogeochemical cycles of phosphorus (P) in aquatic ecosystems. However, the enrichment of phosphate (PO4) and the removal of impurities are quite complex and easy to cause PO4 loss in current δ18OP analytical methods. Moreover, the δ18OP value obtained by the commonly-used instantaneous sampling method is more of the instantaneous information of P, which is accidental or uncertain for accurate identification of the P source. In this study, a new method of in situ enrichment, elution, and purification of PO4 (ISEEP) was developed for δ18OP analysis in waters. This method utilized a PO4 binding phase (Zr-Oxide gel) to selectively in situ adsorb PO4 in water and exhibited an adsorption capacity per unit area of up to 789.3 μg P/cm2. The PO4 on the gel was eluted easily with a 1 M NaOH solution. More than 99.7% of the common anions, cations, and dissolved organic matter (DOM), as well as more than 90% of the trace elements were removed synchronously after adsorption and elution of PO4. The recovery rate of PO4 in the whole procedure was as high as 92.8%. The XRD and SEM examinations showed that the ISEEP can obtain high-purity Ag3PO4 solid for the δ18OP measurement. The reliability of the ISEEP method is confirmed by the measured δ18OP value and standard deviation of parallel samples from different types of natural waters obtained by both the ISEEP and the current popular McLaughlin (2004) method. It provides a good prospect of this new method for tracing the P sources and their biogeochemical cycling in aquatic ecosystems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    1
    Citations
    NaN
    KQI
    []