Influence of the incubation temperature and total dissolved solids concentration on the biofilm and spore formation of dairy isolates of Geobacillus stearothermophilus.
2021
Geobacillus species are an important contaminant in the dairy industry and their presence is often considered as an indicator of poor plant hygiene with the potential to cause spoilage. They can form heat resistant spores that adhere to surfaces of processing equipment and germinate to form biofilms. Therefore, strategies aimed towards preventing or controlling biofilm formation in the dairy industry are desirable. In this study we demonstrate that the preferred temperature for biofilm and spore formation among Geobacillus stearothermophilus A1, D1, P3 and ATCC 12980 was 65°C. Increasing the total dissolved milk solids concentration to 20% (w/v) caused an apparent delay in the onset of biofilm and spore formation to detectable concentrations among all the strains at 55°C. Compared to the onset time of the biofilm formation of A1 in 10% (w/v) reconstituted skim milk, addition of milk protein (whey protein and sodium caseinate) caused an apparent delay in the onset of biofilm formation to detectable concentrations by an average of 10 h at 55°C. This study proposes that temperature and total dissolved solids concentration have a cumulative effect on the biofilm and spore formation of G. stearothermophilus A1, D1, P3 and ATCC 12980. In addition, the findings from this study may indicate that preconditioning of stainless-steel surface with adsorbed milk proteins may delay the onset of biofilm and spore formation of thermophilic bacteria during milk powder manufacture.IMPORTANCE The thermophilic bacilli, Geobacillus stearothermophilus is a predominant spoilage bacterium in milk powder manufacturing plants. If their numbers exceed the accepted levels, this may incur financial loses by lowering the price of the end product. Furthermore, they can form heat resistant spores which adhere to processing surfaces and can germinate to form biofilms. Previously conducted research had highlighted the variation in the spore and biofilm formation among three specific strains of G. stearothermophilus isolated from a milk powder manufacturing plant in New Zealand. The significance of our research is demonstrating the effect of two abiotic factors namely temperature and total dissolved solids concentration on the biofilm and spore formation of these three dairy isolates, leading to modifications in the thermal processing steps aimed towards controlling the biofilm and spore formation of G. stearothermophilus in the dairy industry.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
32
References
2
Citations
NaN
KQI