Molecular characterization of phototrophic microorganisms in the forefield of a receding glacier in the Swiss Alps

2013 
Recently deglaciated areas are ideal environments to study soil formation and primary microbial succession where phototrophic microorganisms may play a role as primary producers. The aim of our study was to investigate the cyanobacterial and green algal community composition in three different successional stages of the Damma glacier forefield in the Swiss Alps using 16S rDNA and ITS rDNA clone libraries. Cyanobacterial target sequences varied along the glacier forefield, with the highest cyanobacterial 16S rRNA gene copies found in sparsely vegetated soils. Sequence analysis revealed that the phototrophic communities were distinct in each of the three soil environments. The majority of the cyanobacterial sequences retrieved from barren soils were related to the Oscillatoriales. The diversity in sparsely vegetated soils was low, and sequences closely related to Nostoc sp. dominated. The majority of the algal phylotypes are related to members of the Trebouxiophyceae known to live as symbiotic partners in lichens. We conclude that the community composition appears to shift markedly along the chronosequence, indicating that each soil environment selects for its phototrophic community. When cyanobacteria occur together with eukaryotic microalgae, they form a rich source of organic matter and may be important contributors of carbon in nutrient-deficient deglaciated soils.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    40
    Citations
    NaN
    KQI
    []