On the Efficiency of Electrochemical Devices from the Perspective of Endoreversible Thermodynamics

2019 
The current work presents a concept that deals with the production of entropy generated by nonequilibrium processes in consequence of mass and energy transfer. The often used concept of endoreversible thermodynamics is based on thenon-realistic conjecture that the entire entropy production is realized at the system boundary. In this contribution, anopen system in a thermodynamically non equilibrium state is assumed. Production of entropy is generated due to nonequilibrium processes accompanied by energy conversion. The steady state of the system is maintained by a negative entropy flux. The conclusions for expansion energy conversion, i. e., thermal machines, confirm the general outcomes of the endoreversible thermodynamics. However, the presented conclusions related to non-expansion energy conversion offer a new perspective on the principle of minimum entropy production and the corresponding stability conditions at steady state. The analysis of the energy conversion in closed cycles is presented for fuel cells, i. e., nonexpansion energy conversion. The efficiency of the energy conversion is maximal at zero power output. Moreover, the efficiency of the fuel cells, and consequently the efficiency of all non-expansion energy conversion processes, depends on the load and then the maximal possible efficiency can be determined.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    14
    Citations
    NaN
    KQI
    []