3D-printed wearable backpack stimulator for chronic in vivo aquatic stimulation

2015 
: The neural mechanisms underlying changes in gene expression in the interconversion between skeletal muscle and the non-contractile electrogenic cells of the electric organ in electric fishes require several days to be manifested. It is extremely challenging to study these non-immediate forms of plasticity in reduced preparations in cell culture due to the time requirements. To address this experimental obstacle we developed a 3D-printed wearable backpack that allows chronic electrical stimulation of aquatic teleost fish. The backpack holds a biphasic simulator using a full H-bridge driver structure. Stimulation amplitude is adjusted with a current source controlled by a micro potentiometer whereas the stimulation waveform is reconfigurable through a micro-controller. A 3.7 V Lithium Ion Polymer battery powers the entire circuit. This backpack system will allow underwater chronic stimulation experiments aimed to study the role that neuronal input exerts on cell phenotypes in a vertebrate species with high tissue regeneration and cell trans-differentiation capabilities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    5
    Citations
    NaN
    KQI
    []