An ex vivo tissue model of cartilage degradation suggests that cartilage state can be determined from secreted key protein patterns

2019 
The pathophysiology of osteoarthritis (OA) involves dysregulation of anabolic and catabolic processes associated with a broad panel of cytokines and other secreted proteins and ultimately lead to cartilage degradation. An increased understanding about the interactions of these proteins by means of systematic in vitro analyses may give new ideas regarding pharmaceutical candidates for treatment of OA and related cartilage degradation. Therefore, first an ex vivo tissue model of cartilage degradation was established by culturing full thickness tissue explants with bacterial collagenase II. Then responses of healthy and degrading cartilage were analyzed by measuring protein abundance in tissue supernatant with a 26-multiplex protein profiling assay, after exposing them to a panel of 55 protein stimulations present in synovial joints of OA patients. Multivariate data analysis including exhaustive pairwise variable subset selection was used to identify the most outstanding changes in the measured protein secretions. This revealed that the MMP9 response is outstandingly low in degraded compared to healthy cartilage and that there are several protein pairs like IFNG and MMP9 that can be used for successful discrimination between degraded and healthy samples. Taken together, the results show that the characteristic changes in protein responses discovered seem promising for accurate detection/diagnosis of degrading cartilage in general and OA in particular. More generally the employed ex vivo tissue model seems promising for drug discovery and development projects related to cartilage degradation, for example when trying to uncover the unknown interactions between secreted proteins in healthy and degraded tissues.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []