Использование алгоритмов обработки информации, учитывающих эффект вторичной модуляции радиолокационных сигналов

2020 
The article provides an assessment of the impact the dynamic structures of power systems of aircraft systems have on the spectrum of the reflected radar signal. In the conditions of autonomous actions of the fighter, the tasks of long-range detection of airborne targets are assigned directly to the onboard radar station. It is necessary to resolve the contradictions associated with increasing the detection range without changing the energy indicators of the onboard radar station. This is possible by optimizing the processing of many spectral components of the signal reflected from the propeller and turboprop engine of airborne targets. The location of propeller reflections in the spectrum of the reflected signal is determined by the technical parameters of the power plant and its mode of operation. The percent of the total energy of the reflected signal spectrum outside the main spectral component is comparable with the energy reflected from the airframe of the aviation complex, most of which is the energy reflected from the rotating elements of power plants. Therefore, the development of an algorithm for detecting a signal with a complex spectral structure that maximizes the probability of detection under time and computational resources restrictions is a very relevant scientific task. The scientific novelty lies in the development of an algorithm for detecting a signal with a complex spectral structure and its detection characteristics taking the effect of secondary modulation into account as well as in the development of practical recommendations for optimizing algorithms for detecting airborne targets. Using the developed algorithm in the fighter’s pulse-Doppler radar station will increase the detection range of an air target against the background of interfering reflections from the water surface.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []