CYP2C19 genotype predicts steady state escitalopram concentration in GENDEP
2012
In vitro work shows CYP2C19 and CYP2D6 contribute to the metabolism of escitalopram to its primary metabolite, N-desmethylescitalopram. We report the effect of CYP2C19 and CYP2D6 genotypes on steady state morning concentrations of escitalopram and N-desmethylescitalopram and the ratio of this metabolite to the parent drug in 196 adult patients with depression in GENDEP, a clinical pharmacogenomic trial. Subjects who had one CYP2D6 allele associated with intermediate metabolizer phenotype and one associated with poor metabolizer (i.e. IM/PM genotypic category) had a higher mean logarithm escitalopram concentration than CYP2D6 extensive metabolizers (EMs) (p = 0.004). Older age was also associated with higher concentrations of escitalopram. Covarying for CYP2D6 and age, we found those homozygous for the CYP2C19*17 allele associated with ultrarapid metabolizer (UM) phenotype had a significantly lower mean escitalopram concentration (2-fold, p = 0.0001) and a higher mean metabolic ratio (p = 0.0003) than EMs,...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
44
References
57
Citations
NaN
KQI