Near-surface modification of optical properties of fused silica by low-temperature hydrogenous atmospheric pressure plasma.

2012 
In this Letter, we report on the near-surface modification of fused silica by applying a hydrogenous atmospheric pressure plasma jet at ambient temperature. A significant decrease in UV-transmission due to this plasma treatment was observed. By the use of secondary ion mass spectroscopy, the composition of the plasma-modified glass surface was investigated. It was found that the plasma treatment led to a reduction of a 100 nm thick SiO2 layer to SiOx of gradual depth-dependent composition. For this plasma-induced layer, depth-resolved characteristic optical parameters, such as index of refraction and dispersion, were determined. Further, a significant plasma-induced increase of the concentration of hydrogen in the bulk material was measured. The decrease in transmission is explained by the plasma-induced near-surface formation of SiOx on the one hand and the diffusion of hydrogen into the bulk material on the other hand.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    19
    Citations
    NaN
    KQI
    []