Electrically tunable dynamic nuclear spin polarization in GaAs quantum dots at zero magnetic field

2018 
In III–V semiconductor nano-structures, the electron and nuclear spin dynamics are strongly coupled. Both spin systems can be controlled optically. The nuclear spin dynamics are widely studied, but little is known about the initialization mechanisms. Here, we investigate optical pumping of carrier and nuclear spins in charge tunable GaAs dots grown on 111A substrates. We demonstrate dynamic nuclear polarization (DNP) at zero magnetic field in a single quantum dot for the positively charged exciton X+ state transition. We tune the DNP in both amplitude and sign by variation of an applied bias voltage Vg. Variation of ΔVg on the order of 100 mV changes the Overhauser splitting (nuclear spin polarization) from −30 μeV (−22%) to +10 μeV (+7%) although the X+ photoluminescence polarization does not change sign over this voltage range. This indicates that absorption in the structure and energy relaxation towards the X+ ground state might provide favourable scenarios for efficient electron-nuclear spin flip-flop...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    1
    Citations
    NaN
    KQI
    []