UHPH-processed O/W submicron emulsions stabilised with a lipid-based surfactant: physicochemical characteristics and behaviour on in vitro TC7-cell monolayers and ex vivo pig's ear skin.

2014 
Abstract Submicron O/W emulsions formulated with sesame oil plus a lipid-base surfactant, and with or without retinyl acetate (RAC) as a model hydrophobic biomolecule, were prepared by single-pass homogenisation at ≥200 MPa (UHPH) and an initial fluid temperature ( T in ) of 24 °C. These emulsions were characterised by a monomodal distribution (peak maximum at 260 nm) and a 2-year potential physical stability at ambient temperature. Submicron droplets were investigated in term of (i) physicochemical characteristics (size distribution curves; ζ -potential value), and (ii) impact on TC7-cell monolayers (MTT-assay and cell LDH-leakage). Submicron droplets ± RAC did not affect or increased significantly ( p  = 0.05) TC7-cell metabolic activity after 4–24 h of exposure indicating absence of cellular impairment, except when high amounts of droplets were deposed on TC7-cells. Indeed, the lipid-based surfactant deposed alone on TC7-cells at high concentration, induced some significant ( p  = 0.05) cell LDH-leakage, and therefore cell-membrane damage. Cellular uptake experiments revealed a significant ( p  = 0.05) time-dependent internalisation of RAC from submicron droplets, and cellular transformation of RAC into retinol. The turnover of RAC into retinol and therefore RAC bioaccessibility appeared faster for RAC-micelles of similar size-range and prepared at atmospheric pressure with polysorbate 80, than for submicron O/W emulsions. Permeation experiments using pig's ear skin mounted on Franz-type diffusion cells, revealed RAC in dermis–epidermis, in significantly ( p  = 0.05) higher amounts for submicron than coarse pre-emulsions. However, RAC amounts remained low for both emulsion-types and RAC was not detected in the receptor medium of Franz-type diffusion cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    5
    Citations
    NaN
    KQI
    []