Identification and biochemical characterization of a novel PP2C-like Ser/Thr phosphatase in E. coli
2018
In bacteria, signaling phosphorylation is thought to occur primarily on His and Asp residues. However, phosphoproteomic surveys in phylogenetically diverse bacteria over the past decade have identified numerous proteins that are phosphorylated on Ser and/or Thr residues. Consistently, genes encoding Ser/Thr kinases are present in many bacterial genomes such as E. coli , which encodes at least three Ser/Thr kinases. Since Ser/Thr phosphorylation is a stable modification, a dedicated phosphatase is necessary to allow reversible regulation. Ser/Thr phosphatases belonging to several conserved families are found in bacteria. One family of particular interest are Ser/Thr phosphatases which have extensive sequence and structural homology to eukaryotic Ser/Thr PP2C phosphatases. These proteins, called eSTPs (eukaryotic-like Ser/Thr phosphatases), have been identified in a number of bacteria, but not in E. coli. Here, we describe a previously unknown eSTP encoded by an E. coli ORF, yegK , and characterize its biochemical properties including its kinetics, substrate specificity and sensitivity to known phosphatase inhibitors. We investigate differences in the activity of this protein in closely related E. coli strains. Finally, we demonstrate that this eSTP acts to dephosphorylate a novel Ser/Thr kinase which is encoded in the same operon.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
52
References
3
Citations
NaN
KQI